

NATUREFIRST

The Road Towards Predicting Sturgeon Migration

Anna Davison (WUR), Marian Mierla, Stefan Hont (DDNI) and Melanie Arp (Sensing Clues)

Field Expert Perspective

Researcher Perspective

Developer Perspective

NATUREFIRST

The Road Towards Predicting Sturgeon Migration

Anna Davison (WUR), Marian Mierla (DDNI) and Melanie Arp (Sensing Clues)

Groundstation **OSPACE**

Nature FIRST

Horizon Europe Research & Innovation Programme

Before we start

Just so you know – we're recording this session.

Please keep your mic off unless you're speaking.

? Got questions? Pop them into the chat anytime!

Webinar structure

- Introduction why predict sturgeon migration? (1 min)
- Scientific approach through Agent-Based Model (Anna - 10 min)
- Pivotal moments followed by a demo (videos) of application highlighting three/four elements (Marian & Melanie - 20 min)
- Key: timeline in everyone's story

Three/four elements of the application

- Highlight the environment on the map (danube sectors etc.)
- Relevant hydrostation data makes the output closer to now-casting, so automated collection
 Simplify the model to define the output that should be on the map:
 - sturgeon heat map (depending or state) and spawn/hatch/mig dates

Workshop structure

- Expert perspective: practical side of monitoring and protecting sturgeon migration (Stefan 10 min)
- < audience questions > (5 min)
- Research perspective: scientific approach through Agent-Based Model (Anna - 10 min)
- < audience questions > (5 min)

Developer perspective: pivotal moments followed by a demo (live/video) of the application (Marian & Melanie - 15 min)

< audience questions > (5 min)

Why Predict Beluga Sturgeon Migration?

Agent-Based Model - An Integrated and Adaptive Approach for Complex Ecosystems -Simulates Sturgeon Migration Paths - Uses telemetry data to model how individual sturgeons migrate, respond to environmental cues, and identifying spawning routes.

- Environmentally Driven Behavior and Habitat Dynamics – Incorporates Danube River water temperature and levels that trigger spawning events, informing the development of a spawning calendar that reflects natural migration timing and is used to monitor sturgeon larval movement and habitat use along the Lower Danube River, helping to identify critical zones.

- Connects with Spawning Success Data - Integrates data on the capture of young-of-the-year to validate model predictions and assess reproductive outcomes.

- Maps Human-Wildlife Conflict Zones - Combines biological modeling with spatial data from Cluey Data Collector to identify and mitigate human-wildlife conflict hotspots in the Danube River.

- Supports Conservation and Scenario Testing - Enables simulation of future river conditions, human pressures, and management strategies—vital for long-term sturgeon protection.

DANUBE DELTA NATIONAL INSTITUTE - TULCEA, ROMÂNIA

Sturgeon of Lower Danube River -Monitoring and Conservation

Ștefan HONȚ, Marian IANI, Marian PARASCHIV, Daniela HOLOSTENCO, Alexandru DOROSENCU

Danube Delta National Institute- Tulcea, România

Forensic Intelligence and Remote Gensing Lechnologies for Nature Conservation

Sturgeons

Of the 27 species of sturgeon spread in the seas and tributary rivers of the Northern Hemisphere, 4 species of sturgeon are found in the Lower Danube

The sturgeon species from the Lower Danube River

Stellate sturgec

Among the 6 sturgeon species that once lived in the Danube basin, we currently find three anadromous species:

□- Huso huso – Beluga sturgeon
 □- Acipenser gueldenstaedtii – Russian sturgeon

- □ A. stellatus Stellate sturgeon
- □- A. ruthenus Sterlet sturgeon

Russian sturgeon

Beltuga Sturgeon (Huso huso) The most valuable fishery resource

"Beluga sturgeon reaches the Black Sea in very large sizes. The usual specimens are 100-250 kg, but much larger specimens are often caught, so a year ago a 560 kg Beluga was caught at the mouth of St. Gheorghe, which was kept in the Museum of Natural History. In 1890, an 882 kg Beluga was also caught at Sf. Gheorghe. which had 126 kg of caviar. The largest Beluga caught at St. Gheorge was recorded in fisherman's book. weighed almost 1161 kg." (Greigore A. 1909)

Beluga sturgeon (*Huso huso*) captured durin the winter of 1966 in Caspian Sea, total length 8 m,

total weight 1 800 kg "The fact that a single Beluga sturgeon with roe can be worth as much as <u>five pairs of</u> <u>oxen shows</u> us how much interest we must have in conserving and breeding such a fish." G. A. 1909

Status of sturgeon species from Lower Danube River, according International Union for Conservation of Nature (IUCN)

Species:	Status:	Population trend:
Huso huso (Belguga sturgeon)	critically endangered	decreasing
Acipenser gueldenstaedtii (Russian Sturgeon)	critically endangered	decreasing
Acipenser Stellatus (Stellate Sturgeon)	critically endangered	decreasing
Acipenser Ruthenus (Sterlet sturgeon)	Endangered	decreasing

The main threats:

I. Excessive fishing and illegal fishing driven by the price of caviar II. Construction of dams

IUCN 2025. The IUCN Red List of Threatened Species. Version 2025-1. **RST** <u>https://www.iucnredlist.org</u> Adults:

Migrate from the BlackSea in the Danube River for spawning in the various specific spawning sites. Currently they reach: Iron Gates II dam (~ 850 river km), in the past: Vienna ~1600 rKm, Regensburg ~2000 km. Some sub-populations start their migration in spring and others in autumn

Early life stages (larvae):

After hatching the larvae migrate downstream

Juveniles:

Migrate downstream and feed in the river, and then juveniles and sub-adults feed in the BS.

Life cycle of anadromous sturgeons

Iron Gate II dam, rkm 863

Conservation and recovery measures

Monitoring the feeding habitats of YOY sturgeon from the Danube River

Monitoring of sturgeon spawning habitats in the Danube (since 2000)

Estimated spawning and downstream migration dates for Huso larvae and YOY in 2023 & 2024

Conservation and recovery measures

Danube River sturgeon restocking Support Program with YOY obtained through controlled reproduction. - Started in 2005 - Over half a million YOY sturgeon released

Capture of wild sturgeon broodstock from the Danube

Artificial reproduction of wild broodstock on the farm

Raising sturgeon juveniles obtained from wild parents and tagging the sturgeon juveniles

Releasing sturgeon juveniles, raised from wild sturgeons

Monitoring Sturgeon migration using acoustic and satellite telemetry

V16 Acoustic tags

Sturgeon monitoring using acoustic and satellite telemetry

Material and methods

VR2W installed at Pardina (Chilia branch)

VR2W receiver (left), Receiver installed at Maliuc - Sulina branch(right)

NATUREFIRST

Sturgeon (tag ID 12075) migration in Danube River up to km 500, recorded in 2016 and 2017 and 2023-2024

RST

Migration of sturgeons on Danube Delta branches recorded in 2022-2024 compared with sturgeons recorded before

Mapping Human-Wildlife Conflict Hotspots in the Danube Delta Biosphere Reserve Using the Cluey Data Collector

Observations ma

Data collection regarding fishing areas in the Danube sector located in the Danube Delta Biosphere Reserve

Observations map Connected as StefanHtz Select time period 2023-01-01 to 2024-12-20 Select data source(s)

DDNI Sturgeon Research Group

Community work (3)
 Assessments (45)
 Actions taken (117)
 Doservations (196)
 Doservations (196)
 Doservations (196)
 Domesticated animals (2)
 Domesticated animals (2)
 Domesticated animals (2)
 Domesticated animals (1)
 Domesticated animal

+- Mining (1)

Data collection area during the period Jan. 1, 2023 – Dec. 20, 2024 (Using Observation map tool)

Data analysis result using analytical.sensingclues

HANDOVER Questions for the field expert?

the information we have to aid monitoring and conservation?

June 2023

AGENT-BASED MODEL OF BELUGA STURGEON

- Population dynamics

Migration patterns

What is an agent-based model?

Agent based models contain "agents" - in this case sturgeon

Agents have sets of rules to make decisions

Individual decisions create population level patterns

Should I migrate now?

Am I an adult?

Is this my first time or has it been 2+ years since last time?

Is the water over 6 degrees?

Environmental Data

Daily timesteps 2015 - 2023 (or present) Water temperature

Model

"Adult sturgeon migrate upstream in the spring to spawn triggered by a combination of temperature and a water level peak"

+

"Spring migration occurs at temperatures of 6-21°C"

Adult Migration and Spawning

What did we FIND OUT?

Experiment Results

Spawning Temperature Threshold

The temperature at which sturgeon are triggered to spawn

Environmental Dataset Location

The selection of which environmental sensor along the river to use as input

Interaction

The impact of these two variables combined is amplified

Virtual Ecologist Approach

20 simulations of increasing, stable and decreasing adult populations

Change decreasing increasing stable

Adult vs YoY Catch across the changing adult population experiments with aggregate points

MOVING FORWARD

GitHub

Coming soon...

Let's make it useful in the field!

HANDOVER From Science to a Tool

HANDOVER Questions for the researcher?

Scientific handover

Transition from research to development.

First map

Visualizing the area of interest for the sturgeons. **Hydrostations** Zooming in on the input data. Sturgeon heat map

Adding the modelling outputs to the tool.

Handover From Science To A Tool

Code Blame 1184 li

				1	######################################
		Code	Blame 1184 lines (1105 loc) · 55.5 KB	2	# The following is an agent based mode.
				3	<pre># influence beluga sturgeon (Huso huso</pre>
		300	##### Load in agents #####	4	# River up to the Iron Gates dams. The
		301	# Load in the pre-made, standard sturgeo	r 5	# accumulated as far as possible from a
		302	# population.	6	<pre># consultation with experts. The sampl:</pre>
	DI	303		7	# reflects the sampling conducted by D
Code	Blame 1184 lines (116	304	# Use this for the baseline	8	
		305	<pre>sturgeon <- read.csv("baseline sturpop.c</pre>	s 9	# Agents are individual adult and suba
383	##### For Loop - Moc	306	<pre>spawningtrack <- read.csv("baseline stan</pre>	c 10	# and YoY from the same mother. Spatia
384	# Establish the time	307		11	# using real spawning, wintering and for
385	start_time <- Sys.ti	308	# Convert to sf data frame	12	
386		309	sturgeon sf <-	13	# The output is several csv files which
387	# The model runs for	310	st as sf(14	# spawning, the sturgeon present in the
388	for (day in 1:nrow(E	311	sturgeon.	15	# the simulation of YoY sampling.
389	print(EnvVarHist\$[312	coords = c("X Coord", "Y Coord").	16	
390	# Firstly mortalit	313	crs = 4326.	17	
391	# For each of the	314	na.fail = FALSE	18	
392	if (prow(younggrou	315)	19	# First load in the packages used
393	for (group in 1:	316	<pre>sturgeon sf\$Snawnsite <- as numeric(stur)</pre>	20	library(lubridate)
204		317	star Beoulist bobannist te astramet te (start	21	library(tidyverse)
354	*************	318	snawningtrack Date left (- as POSIXct(sn	22	library(dplyr)
395	# First comes	319	spawningtrack@ate_spawned <_ as POSIXct	23	library(leaflet)
396	# the day to t	320	spawninger acceptate_spawned <- as nosince	24	library(magrittr)
397	<pre># Mortality is</pre>	221	# Load in the data frame for the evictin	25	library(sf)
398	# first year i	222	weupggroups (pood scu("Start vourggroup	^٤ 26	library(ggplot2)
399	# starting wit	322	younggroups <- read.csv(scarc_younggroup	27	library(TrackReconstruction)
400		225	cornames(younggroups) <- c(iD , class	J 28	library(stringr)
401	# Mortality is	224	younggroups x <- str_replace_all(younggro	oups\$x, ([c(x	
402	# function whi	325	younggroupspr <- str_replace_all(younggroupspr	oups\$r, ([r =	()),)
403	# annual morta	326	younggroups <- st_as_st(younggroups, coo	rds = c(X),	Y^{-}), crs = 4326)
404	survivingYoung	<- surviv	/ingYoY(vounggroups\$Number[group], asYoYnum))	
405	# Replace the r	number wit	the new number of living individuals	, ,	
406	vounggrouns Num	her group	l <- survivingYoung		
407	# Add a day to	their age	,		
402	# Aud a day to	[gnoun] (vounggnoung\$Ago[gnoun] + 1		
+00	younggroups page	:[Rionb] (- younggroupspage[group] + 1		

nes (1105 loc) · 55.5 KB 🔀 Code 55% faster with GitHub Copilot	Raw [] 🛃 🖉 👻 🖸
BELUGA STURGEON ABM ###################################	
is an agent based model built to examine the factors which	
uga sturgeon (Huso huso) migration and population in the Danube	
he Iron Gates dams. The parameters included in this model are	
s far as possible from a mixture of literature review and	
with experts. The sampling of the YoY simulated in this model	
sampling conducted by DDNI each year.	
dividual adult and subadult sturgeon as well as groups of eggs	
the same mother. Spatial information was created using ArcGIS Pro	
wawning, wintering and feeding sites.	
several csv files which record key dates in migration and	
sturgeon present in the model, overall population numbers and	
n of YoY sampling.	
the packages used	
te)	
se)	
)	
r)	
)	
construction)	
)	

Designing the Interactive Tool

		Solution na	ame	
About	Tab name 1	Tab name 2		
High level or more thorough solution solution description. This text area could also have an areal introduction on how to use the	Map title			
solution, or even a link to somewhere relevant. www.relevant-link.com	tqa	ion/filter 1	option/filter 2	
Filters				Map options
Date Filters				
Data Sources				Map Legend
Concepts				
Generate button			Map area	

Solution name version 1.0 © 2025 | Sensing Clues website

Scientific handover

Transition from research to development.

First map

Visualizing the area of interest for the sturgeons. **Hydrostations** Zooming in on the input data. Sturgeon heat map Adding the modelling outputs to the

tool.

Starting Point The Map

@ 2025 | Sensing Clues website

• The Landscape

- The Danube River
- Key Sites for Sturgeons

Solution name version 1.0 © 2025 | Sensing Clues website

Study the sturgeon's homeground

Highlight the environment on the map

- Zoom in to study area: Europe-Romania-Danube-Delta
- Basemap toggle
- Show Danube river sectors
- Show spawning/wintering sites
- Show potential/proved spawning sites
- Comparison of Anna's scientific map with the live version

<Live Demo>

Scientific handover

Transition from research to development.

First map

Visualizing the area of interest for the sturgeons. **Hydrostations** Zooming in on the input data. Sturgeon heat map

Adding the modelling outputs to the tool.

Informed Development

Focus On The Inputs

About	Tab name 1	Tab name 2		
High level or more thorough solution solution description. This text area could also have	Map title			
an small introduction on now to use the solution, or even a link to somewhere relevant. www.relevant-link.com	op	tion/filter 1	option/filter 2	
Filtors				Map options
Date Filters				
Data Sources				Map Legend
Concepts				
Generate button			Map area	
L				

Solution name version 1.0 © 2025 | Sensing Clues website

Focus On The Inputs

Logo	Solution name		Connected as XXX Log
About High level or more thorough solution solution description. This text area could also have an small introduction on how to use the solution, or even a link to somewhere relevant. www.refevant-link.com	Tab name 1 Tab name 2 Map title option/filter 1	option/filter 2	
Filters Die e Filt <u>'s</u> Die 1 : a <u>cos</u>			Map options Map Legend
		Map area	

Solution name version 1.0 © 2025 | Sensing Clues website

Hydrostations into the mix

Relevant hydrostation data makes the output closer to now-casting, so automated collection

- Show https://www.cotele-dunarii.ro/
- Show collection of recent data
- Show recent station data in the application

<Live Demo>

Scientific handover

Transition from research to development.

First map

Visualizing the area of interest for the sturgeons. **Hydrostations** Zooming in on the input data. Sturgeon heat map

Adding the modelling outputs to the tool.

Simplifying The Model

End User In The Picture

Modelling Outputs

@ 2025 | Sensing Clues website

Modelling Outputs

@ 2025 | Sensing Clues website

Running the model

Simplify the model to define the output that should be on the map: sturgeon heat map (depending on state) and spawn/hatch/migration dates

- Show a model run, short version
- Show the sturgeon heat map after a model run, switching between state

<Live Demo>

Tool Under Development

HANDOVER Questions for the developer?

Thanks for Listening!

Over to you: Questions? Thoughts? Reflections?

Conclusions:

Why Predicting Beluga Sturgeon Migration for Sturgeon Conservation?

Agent-Based Model - An Integrated and Adaptive Approach for Complex Ecosystems

- -Simulates Sturgeon Migration Paths Uses telemetry data to model how individual sturgeons migrate, respond to environmental cues, and identifying spawning routes.
- -Environmentally Driven Behavior and Habitat Dynamics Incorporates Danube River water temperature and levels that trigger spawning events, informing the development of a spawning calendar that reflects natural migration timing and is used to monitor sturgeon larval movement and habitat use along the Lower Danube River, helping to identify critical zones.

Conclusions:

- Maps Human-Wildlife Conflict Zones Combines biological modeling with spatial data from Cluey Data Collector to identify and mitigate human-wildlife conflict hotspots in the Danube River.
- Supports Conservation and Scenario Testing Enables simulation of future river conditions, human pressures, and management strategies—vital for long-term sturgeon protection.

Field Expert Perspective

Researcher Perspective

Developer Perspective

More info?

Stefan Hont - stefan.hont@ddni.ro Anna Davison - anna.davison@wur.nl Marian Mierla - marian.mierla@ddni.ro Melanie Arp - melanie.arp@sensingclues.org ddni.ro

EXTRA IMAGES

